1.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( )
A.21 B.19
C.9 D.-11
解析:圆C1的圆心坐标为(0,0),半径r1=1.将圆C2化为标准方程(x-3)2+(y-4)2=25-m(m<25),得圆C2的圆心坐标为(3,4),半径r2=(m<25).由两圆相外切得|C1C2|=r1+r2=1+=5,解方程得m=9.
答案:C
2.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB的垂直平分线的方程为( )
A.x+y-1=0 B.2x-y+1=0
C.x-2y+1=0 D.x-y+1=0
解析:圆x2+y2-2x-5=0化为标准方程是(x-1)2+y2=6,其圆心是(1,0);圆x2+y2+2x-4y-4=0化为标准方程是(x+1)2+(y-2)2=9,其圆心是(-1,2).线段AB的垂直平分线就是过两圆圆心的直线,验证可得A正确.
答案:A
3.圆O1:x2+y2-6x+16y-48=0与圆O2:x2+y2+4x-8y-44=0的公切线条数为( )
A.4条 B.3条
C.2条 D.1条
解析:圆O1为(x-3)2+(y+8)2=121,
O1(3,-8),r=11,
圆O2为(x+2)2+(y-4)2=64,O2(-2,4),R=8,
∴|O1O2|==13,
∴r-R<|O1O2|<R+r,
∴两圆相交.∴公切线有2条.
答案:C