一、选择题(每小题5分,共20分)
1.若a∈R,则“a=1”是“|a|=1”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分又不必要条件
解析: 若a=1,则有|a|=1是真命题,即a=1⇒|a|=1,由|a|=1可得a=±1,所以若|a|=1,则有a=1是假命题,即|a|=1⇒a=1不成立,所以a=1是|a|=1的充分而不必要条件,故选A.
答案: A
2.设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析: 设数列{an}的公比为q,因为a1<a2,且a1>0,所以有a1<a1q,解得q>1,所以数列{an}是递增数列;反之,若数列{an}是递增数列,则公比q>1且a1>0,所以a1<a1q,即a1<a2,所以“a1<a2”是“数列{an}是递增数列”的充分必要条件.