1.已知函数f(x)=|2x+1|.
(1)解不等式f(x)>x+5;
(2)若对于任意x,y∈R,有|x-3y-1|<,|2y+1|<,求证:f(x)<1.
解:(1)f(x)>x+5⇒|2x+1|>x+5
⇒2x+1>x+5或2x+1<-x-5,
所以解集为{x|x>4或x<-2}.
(2)证明:f(x)=|2x+1|=|2x-6y-2+6y+3|≤2|x-3y-1|+3|2y+1|<+=1.
2.(2018·全国卷Ⅱ)设函数f(x)=5-|x+a|-|x-2|.
(1)当a=1时,求不等式f(x)≥0的解集;
(2)若f(x)≤1,求a的取值范围.
解:(1)当a=1时,f(x)=