【备 考 要 点】
概率问题综合性强,都是以实际问题为背景,对运用数学思想方法的要求高。重点考查随机事件、古典概型、互斥事件、独立事件、n次独立重复试验中恰好发生k次等五种事件的概率.
会用样本频率分布估计总体分布,会用样本平均数估计总体期望值,会用样本的方差估计总体的方差,样本频率分布直方图与茎叶图依然是命题的热点.从近几年高考看,概率与统计知识约占全卷总分的10%左右。基本上是是一个选择题或填空题、一个解答题。概率与统计问题是每年高考必考内容.其考查特点一是重视对等可能事件的概率计算公式,互斥事件的概率加法公式,对立事件的概率减法公式,相互独立事件的概率乘法公式,事件在n次独立重复试验种恰好发生k次的概率计算公式等五个基本公式的应用
试题多为课本例题,习题拓展加工的基础题或中档题.只要我们理解和掌握五个概率公式及其应用,夯实基础,借助排列组合知识和化归转化思想方法,就能顺利解答高考概率与统计试题.
【2011高 考 题 型】
概率与统计高考对概率与统计内容的考查,往往 以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,2011 年高考概率统计应用题多数省份出现在解答题前三题的位置,可见概率统计在高考中属于中档题。在今年的高考中,可能涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合