1.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )
A.3 B.1
C.-1 D.-3
解析:因为f(x)是定义在R上的奇函数,因此f(-x)+f(x)=0.当x=0时,可得f(0)=0,可得b=-1,此时f(x)=2x+2x-1,因此f(1)=3.又f(-1)=-f(1),所以f(-1)=-3.
答案:D
2.(2011年高考福建卷)对于函数f(x)=asin x+bx+c(其中a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是( )
A.4和6 B.3和1
C.2和4 D.1和2
解析:∵f(1)=asin 1+b+c,f(-1)=-asin 1-b+c,且c是整数,∴f(1)+f(-1)=2c是偶数.
在选项中只有D中两数和为奇数,故不可能是D.
答案:D