一、选择题(每小题5分,共25分)
1.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步时,正确的证法是( ).
A.假设n=k(k∈N+),证明n=k+1命题成立
B.假设n=k(k是正奇数),证明n=k+1命题成立
C.假设n=2k+1(k∈N+),证明n=k+1命题成立
D.假设n=k(k是正奇数),证明n=k+2命题成立
解析 A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.
答案 D
2.用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是( ).
A.2k+2 B.2k+3
C.2k+1 D.(2k+2)+(2k+3)
解析 当n=k时,左边是共有2k+1个连续自然数相加,即1+2+3+…+(2k+1),
所以当n=k+1时,左边是共有2k+3个连续自然数相加,即1+2+3+…+(2k+1)+(2k+2)+(2k+3).
答案 D