2013年高三数学一轮复习 第八章第8课时知能演练轻松闯关 新人教版
1.抛物线的顶点在坐标原点,焦点与双曲线y25-x24=1的一个焦点重合,则该抛物线的标准方程可能是( )
A.x2=4y B.x2=-4y
C.y2=-12x D.x2=-12y
解析:选D.由题意得c=5+4=3,∴抛物线的焦点坐标为(0,3)或(0,-3),∴该抛物线的标准方程为x2=12y或x2=-12y,故选D.
2.(2011•高考课标全国卷)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A、B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为( )
A.18 B.24
C.36 D.48
解析:选C.不妨设抛物线的标准方程为y2=2px(p>0),由于l垂直于对称轴且过焦点,故直线l的方程为x=p2.代入y2=2px得y=±p,即|AB|=2p,又|AB|=12,故p=6,所以抛物线的准线方程为x=-3,故S△ABP=12×6×12=36.
3.在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;