学习目标
1. 体会函数的零点与方程根之间的联系,掌握零点存在的判定条件,能用二分法求方程的近似解,初步形成用函数观点处理问题的意识;
2. 结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题.
学习过程
一、课前准备
(复习教材P86~ P113,找出疑惑之处)复习1:函数零点存在性定理.
如果函数 在区间 上的图象是连续不断的一条曲线,并且有 ,那么,函数 在区间 内有零点.
复习2:二分法基本步骤.
①确定区间 ,验证 ,给定精度ε;
②求区间 的中点 ;
③计算 : 若 ,则 就是函数的零点; 若 ,则令 (此时零点 ); 若 ,则令 (此时零点 );
④判断是否达到精度ε;即若 ,则得到零点零点值a(或b);否则重复步骤②~④.
复习3:函数建模的步骤.
根据收集到的数据的特点,通过建立函数模型,解决实际问题的基本过程:收集数据→画散点图→选择函数模型→求函数模型→检验→符合实际,用函数模型解释实际问题;不符合实际,则重新选择函数模型,直到符合实际为止.